Extensions 1→N→G→Q→1 with N=C22×D13 and Q=C2

Direct product G=N×Q with N=C22×D13 and Q=C2
dρLabelID
C23×D13104C2^3xD13208,50

Semidirect products G=N:Q with N=C22×D13 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22×D13)⋊1C2 = C2×D52φ: C2/C1C2 ⊆ Out C22×D13104(C2^2xD13):1C2208,37
(C22×D13)⋊2C2 = D4×D13φ: C2/C1C2 ⊆ Out C22×D13524+(C2^2xD13):2C2208,39
(C22×D13)⋊3C2 = C2×C13⋊D4φ: C2/C1C2 ⊆ Out C22×D13104(C2^2xD13):3C2208,44

Non-split extensions G=N.Q with N=C22×D13 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22×D13).1C2 = D26⋊C4φ: C2/C1C2 ⊆ Out C22×D13104(C2^2xD13).1C2208,14
(C22×D13).2C2 = D13.D4φ: C2/C1C2 ⊆ Out C22×D13524+(C2^2xD13).2C2208,34
(C22×D13).3C2 = C22×C13⋊C4φ: C2/C1C2 ⊆ Out C22×D1352(C2^2xD13).3C2208,49
(C22×D13).4C2 = C2×C4×D13φ: trivial image104(C2^2xD13).4C2208,36

׿
×
𝔽