Extensions 1→N→G→Q→1 with N=C22xD13 and Q=C2

Direct product G=NxQ with N=C22xD13 and Q=C2
dρLabelID
C23xD13104C2^3xD13208,50

Semidirect products G=N:Q with N=C22xD13 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22xD13):1C2 = C2xD52φ: C2/C1C2 ⊆ Out C22xD13104(C2^2xD13):1C2208,37
(C22xD13):2C2 = D4xD13φ: C2/C1C2 ⊆ Out C22xD13524+(C2^2xD13):2C2208,39
(C22xD13):3C2 = C2xC13:D4φ: C2/C1C2 ⊆ Out C22xD13104(C2^2xD13):3C2208,44

Non-split extensions G=N.Q with N=C22xD13 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22xD13).1C2 = D26:C4φ: C2/C1C2 ⊆ Out C22xD13104(C2^2xD13).1C2208,14
(C22xD13).2C2 = D13.D4φ: C2/C1C2 ⊆ Out C22xD13524+(C2^2xD13).2C2208,34
(C22xD13).3C2 = C22xC13:C4φ: C2/C1C2 ⊆ Out C22xD1352(C2^2xD13).3C2208,49
(C22xD13).4C2 = C2xC4xD13φ: trivial image104(C2^2xD13).4C2208,36

׿
x
:
Z
F
o
wr
Q
<